DECOMPOSITION OF COMPLEX VECTOR SPACE C^{n} INTO INVARIANT SUBSPACES

Myint Myint Maw*

Abstract

This paper study the existence of eigenvalue for every linear operator on a finite-dimensional complex vector space. In this paper, we will discuss although eigenvectors corresponding to distinct eigenvalues are linearly independent, they can not span the complex vector space. Then we give decomposition of complex vector space C^{n} into generalized eigenspaces and Jordan subspaces.

Keywords: Invariant subspace, Jordan chain, Generalized eigenspace, Jordan subspace

1. Eigenvalues and eigenvectors

Throughout the paper, V denotes n-dimensional complex vector space.
1.1 Definition. Let $A: V \rightarrow V$ be a linear operator. A subspace $M \subset V$ is called invariant for the linear operator A, or A-invariant, if $A x \in M$ for every vector $x \in M$.

Trivial examples of invariant subspaces are $\{0\}, V$, $\operatorname{Ker} A=\{x \in V \mid A x=0\}$ and
$\operatorname{Im} A=\{A x \mid x \in V\}$.
1.2 Definition. Let $A: V \rightarrow V$ be a linear operator. A number $\lambda \in C$ is called an eigenvalue of A if there exists $x \in V$ such that $x \neq 0$ and $A x=\lambda x$. The vector x is called an eigenvector of A corresponding to λ.
1.3 Theorem. Let $A: V \rightarrow V$ be a linear operator and $\lambda \in C$. Then the following are equivalent:
(a) $\quad \lambda$ is an eigenvalue of A.
(b) $A-\lambda I$ is not injective.

[^0](c) $A-\lambda I$ is not surjective.
(d) $A-\lambda I$ is not invertible.

Proof. λ is an eigenvalue of $A \Leftrightarrow \exists v \in V$ such that $v \neq 0$ and $A v=\lambda v$.

$$
\begin{aligned}
& \Leftrightarrow(A-\lambda I) v=0 \\
& \Leftrightarrow A-\lambda I \text { is not injective. }
\end{aligned}
$$

Thus conditions (a) and (b) are equivalent.
Clearly conditions (b), (c) and (d) are equivalent.
1.4 Theorem. Every linear operator on a finite-dimensional complex vector space has an eigenvalue.

Proof. To show that A has an eigenvalvue, choose a non-zero vector $v \in V$. We consider the $n+1$ vectors $v, A v, A^{2} v, \ldots, A^{n} v$. Since the dimension of V is n, v, $A v, A^{2} v, \ldots, A^{n} v$ are not linearly independent.

Thus there exist complex numbers $a_{0}, a_{1}, \ldots, a_{n}$, not all zero such that $a_{0} v+a_{1} v$ $+\ldots+a_{n} A^{n} v=0$.

Make the a 's the coefficients of a polynomial, by the Fundamental Theorem of Linear Algebra which can be written in factored form as

$$
a_{0}+a_{1} z+\ldots+a_{n} z^{n}=c\left(z-\gamma_{1}\right) \ldots\left(z-\gamma_{m}\right), m \leq n
$$

where m is largest positive integer such that $a_{m} \neq 0, c$ is a non-zero complex number, each γ_{j} is complex and equation holds for all complex z. We then have

$$
\begin{aligned}
a_{0} v+a_{i} A v+\ldots+a_{n} A^{n} v & =0 \\
\left(a_{0} I+a_{1} A+\ldots+a_{n} A^{n}\right) v & =0 \\
\left(c\left(A-\gamma_{1} I\right) \ldots\left(A-\gamma_{m} I\right)\right) v & =0
\end{aligned}
$$

We know that the composition of injective mappings is injective and $v \neq 0$. Thus $A-\gamma_{j} I$ is not injective for at least one j. In other words, A has an eigenvalue.
1.5 Proposition. Non-zero eigenvectors corresponding to distinct eigenvalues of A are linearly independent.

Proof. Suppose that $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of A and v_{1}, \ldots, v_{m} are corresponding non-zero eigenvectors. We need to prove that v_{1}, \ldots, v_{m} are linearly independent. Suppose that a_{1}, \ldots, a_{m} are complex numbers such that $a_{1} v_{1}+\ldots+a_{m} v_{m}=0$. Apply the linear operator $\left(A-\lambda_{2} I\right)\left(A-\lambda_{3} I\right) \ldots\left(A-\lambda_{m} I\right)$ to both sides of the equation above,

$$
\left(\left(A-\lambda_{2} I\right)\left(A-\lambda_{m} I\right) \ldots\left(A-\lambda_{m} I\right)\left(a_{1} v_{1}+\ldots+a_{m} v_{m}\right)=0 .\right.
$$

Since we have $\left(A-\lambda_{j} I\right) v_{j}=0, j=1,2, \ldots, m$ and two polynomials in the same linear operator are commute, then we have

$$
\left(\left(A-\lambda_{2} I\right)\left(A-\lambda_{3} I\right) \ldots\left(A-\lambda_{m} I\right)\left(a_{1} v_{1}\right)=0 .\right.
$$

$\operatorname{But}\left(A-\lambda_{j} I\right) v_{1}=A v_{1}-\lambda_{j}\left(I v_{1}\right)=\lambda_{1} v_{1}-\lambda_{j} v_{1}=\left(\lambda_{1}-\lambda_{j}\right) v_{1}$ for $j \neq 1$.
Thus $a_{1}\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right) \ldots\left(\lambda_{1}-\lambda_{m}\right) v_{1}=0$. Since λ 's are distinct eigenvalues and v_{1} is non-zero eigenvector, we get $a_{1}=0$. In a similar fashion, $a_{j}=0$ for each j.
1.6 Definition. Suppose $A: V \rightarrow V$ and $\lambda \in \boldsymbol{C}$. The eigenspace of A corresponding to λ, denote by $E(\lambda, A)$, is defined by $E(\lambda, A)=\operatorname{Ker}(A-\lambda I)$.
1.7 Theorem. Suppose V is finite-dimensional and $A: V \rightarrow V$. Suppose also that $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of A. Then $E\left(\lambda_{1}, A\right)+\ldots+E\left(\lambda_{m}, A\right)$ is a direct sum and $\operatorname{dim} E\left(\lambda_{1}, A\right)+\ldots+\operatorname{dim} E\left(\lambda_{m}, A\right) \leq \operatorname{dim} V$.

Proof. We know that the null space of each linear mapping on V is a subspace of V.

Thus $E\left(\lambda_{1}, A\right)+\ldots+E\left(\lambda_{m}, A\right)$ is a subspace of V.
Take any $x \in E\left(\lambda_{1}, A\right) \cap E\left(\lambda_{j}, A\right)$ for $i \neq j$.
So $\left(A-\lambda_{i} I\right) x=0$ and $\left(A-\lambda_{j} I\right) x=0$.
$A x=\lambda_{i} x$ and $A x=\lambda_{j} x$ this implies that $\lambda_{i} x=\lambda_{j} x$ so $\left(\lambda_{i}-\lambda_{j}\right) x=0$.

Since λ 's are different, we get $x=0$. Thus $E\left(\lambda_{1}, A\right)+\ldots+E\left(\lambda_{m}, A\right)$ is a direct sum of V.

Hence $\operatorname{dim}\left(E\left(\lambda_{1}, A\right)+\ldots+E\left(\lambda_{m}, A\right)\right)=\operatorname{dim} E\left(\lambda_{1}, A\right)+\ldots+\operatorname{dim} E\left(\lambda_{m}, A\right) \leq \operatorname{dim} V$.
1.8 Remark. Non-zero eigenvectors corresponding to distinct eigenvalues of A need not span V.
1.9 Example. The linear operator $A: C^{2} \rightarrow C^{2}$ defined by $A(w, z)=(z, 0)$.
$\forall(w, z) \neq(0,0)$ and $\forall \lambda \neq 0$ in $C, \lambda(w, z) \neq(z, 0)$.
Thus to get $A(w, z)=\lambda(w, z), \lambda=0$ is forced, and so 0 is only eigenvalue of A. The set of eigenvectors corresponding 0 is $\left.\left\{(w, 0) \in \mathbf{C}^{2}\right) \mid w \in \mathbf{C}\right\}$ it is one dimensional subspace of \mathbf{C}^{2}. Clearly $(w, 0)$ cannot span \mathbf{C}^{2}.

2. Generalized Eigenspaces

2.1 Definition. Let λ be an eigenvalue of a linear operator $A: C^{n} \rightarrow C^{n}$. A chain of vectors $x_{0}, x_{1}, \ldots, x_{k}$ is called Jordan chain of A corresponding to λ if $x_{0} \neq 0$ and the following relation hold:

$$
\begin{align*}
A x_{0} & =\lambda x_{0} \\
A x_{1}-\lambda x_{1} & =x_{0} \\
A x_{2}-\lambda x_{2} & =x_{1} \tag{1}\\
& \vdots \\
A x_{k}-\lambda x_{k} & =x_{k-1}
\end{align*}
$$

x_{0} is an eigenvector of A corresponding to λ. The vectors x_{1}, \ldots, x_{k} are called generalized eigenvectors of A corresponding to the eigenvalue λ and eigenvector x_{0}.

Equation 2.1(1) can be written $(A-\lambda I) x_{0}=0,(A-\lambda I) x_{1}=x_{0}, \ldots,(A-\lambda I) x_{k}=x_{k-1}$.
So $(A-\lambda I) x_{0}=0,(A-\lambda I)^{2} x_{1}=0,(A-\lambda I)^{3} x_{2}=0, \ldots,(A-\lambda I)^{k+1} x_{k}=0$. Thus we way calculate a Jordan chain into the form $(A-\lambda I)^{k} x_{k},(A-\lambda I)^{k-1} x_{k}, \ldots$, $(A-\lambda I) x_{k}, x_{k}$.
2.2 Definition. The subspace $\operatorname{Ker}(A-\lambda I)^{p}$, integer $p \geq 1$ is called the generalized eigenspace of A corresponding to eigenvalue λ of A if Ker $(A-\lambda I)^{i}=\operatorname{Ker}(A-\lambda I)^{p}$ for all integer $i>p$ and is denoted by $R_{\lambda}(A)$. So $R_{\lambda}(A)=\operatorname{Ker}(A-\lambda I)^{p}$ is the biggest subspace in (1). Since $p \leq n$ we also have $R_{\lambda}(A)=\left\{x \in C^{n} \mid(A-\lambda I)^{n} x=0\right\}=\operatorname{Ker}(A-\lambda I)^{n}$.
2.3 Proposition. The generalized eigenspace $R_{\lambda}(A)$ contains the vectors from any Jordan chain of A corresponding to λ and $R_{\lambda}(A)$ is A-invariant.

Proof. Let x_{0}, \ldots, x_{k} be a Jordan chain of A corresponding to λ. Then

$$
\begin{aligned}
(A-\lambda I)^{k+1} x_{k} & =(A-\lambda I)^{k}(A-\lambda I) x_{k} \\
& =(A-\lambda I)^{k} x_{k-1}=(A-\lambda I)^{k-1} x_{k-2} \\
& \vdots \\
& =(A-\lambda I) x_{0} \\
& =0 .
\end{aligned}
$$

Hence $x_{i} \in R_{\lambda}(A), i=0, \ldots, k$.
If $x \in \operatorname{Ker}(A-\lambda I)^{n}$, then $(A-\lambda I)^{n} x=0$.
Thus $(A-\lambda I)^{n}(A x)=A\left((A-\lambda I)^{n} x\right)=A 0=0$.
Hence $R_{\lambda}(A)=\operatorname{Ker}(A-\lambda I)^{n}$ is A-invariant.
2.4 Lemma. For any eigenvalue λ of A, then (the restriction linear operator of A on $\left.R_{\lambda}(A)\right),\left.A\right|_{R_{\lambda}(A)}$ has only one eigenvalue λ.

Proof. Let λ^{\prime} be eigenvalue of $\left.A\right|_{R_{\lambda}(A)}$.
Then there exists nonzero eigenvector $x \in R_{\lambda}(A)$ such that $A x=\lambda^{\prime} x$. Then
$(A-\lambda I) x=\lambda^{\prime} x-\lambda x=\left(\lambda^{\prime}-\lambda\right) x$
$(A-\lambda I)^{2} x=(A-\lambda I)\left(\lambda^{\prime}-\lambda\right) x=\left(\lambda^{\prime}-\lambda\right)\left(\lambda^{\prime}-\lambda\right) x=\left(\lambda^{\prime}-\lambda\right)^{2} x$ and so on, thus we have $(A-\lambda I)^{k} x=\left(\lambda^{\prime}-\lambda\right)^{k} x$ for each positive integer k. Since x is
generalized eigenvector of A corresponding λ, for some l, then $\left(\lambda^{\prime}-\lambda\right)^{l}=0$, thus we have $\lambda^{\prime}=\lambda$.
2.5 Lemma. If $A: C^{n} \rightarrow C^{n}$ be a linear operator, then non zero generalized eigenvectors corresponding to distinct eigenvalues of A are linearly independent.

Proof. Suppose $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of A and v_{1}, \ldots, v_{m} are corresponding non zero generalized eigenvectors. Suppose
(1) $a_{1} v_{1}+\ldots+a_{m} v_{m}=0$ for some scalars a_{1}, \ldots, a_{m}.

Let k be the largest non negative integer such that $\left(A-\lambda_{1} I\right)^{k} \nu_{1} \neq 0$ and $\left(A-\lambda_{1} I\right)^{k} v_{1}=w$. Thus $\left(A-\lambda_{1} I\right) w=\left(A-\lambda_{1} I\right)^{k+1} v_{1}=0$ and hence $A w=\lambda_{1} w$. Thus $(A-\lambda I) w=\lambda_{1} w-\lambda w=\left(\lambda_{1}-\lambda\right) w, \forall \lambda \in C$. So $(A-\lambda I)^{n} w=\left(\lambda_{1}-\lambda\right)^{n} w$, $\forall \lambda \in C$, where $n=\operatorname{dim} C^{n}$. Apply the linear operator

$$
\begin{aligned}
& \left(A-\lambda_{1} I\right)^{k}\left(A-\lambda_{2} I\right)^{n} \ldots\left(A-\lambda_{m} I\right)^{n} \text { to }(1) \\
& \left(A-\lambda_{1} I\right)^{k}\left(A-\lambda_{2} I\right)^{n} \ldots\left(A-\lambda_{m} I\right)^{n}\left(a_{1} v_{1}+\ldots+a_{m} v_{m}\right)=0 \\
& a_{1}\left(A-\lambda_{1} I\right)^{k}\left(A-\lambda_{2} I\right)^{n} \ldots\left(A-\lambda_{m} I\right)^{n} v_{1}=0 \\
& a_{1}\left(A-\lambda_{2} I\right)^{n} \ldots\left(A-\lambda_{m} I\right)^{n} w=0 \\
& a_{1}\left(\lambda_{1}-\lambda_{2}\right)^{n} \ldots\left(\lambda_{1}-\lambda_{m}\right)^{n} w=0 .
\end{aligned}
$$

This implies that $a_{1}=0$. In a similar fashion $a_{j}=0$ for each j. Thus v_{1}, \ldots, v_{m} are linearly independent.
2.6 Lemma. Given a linear operator $A: C^{n} \rightarrow C^{n}$ with an eigenvalue λ, let q be a positive integer for which $\operatorname{Ker}(A-\lambda \mathrm{I})^{q}=R \lambda(R)$. Then the subspace $\operatorname{Ker}(A$ $-\lambda I)^{q}$ and $\operatorname{Im}(A-\lambda I)^{q}$ are direct complements to each other in C^{n}.

Proof. Since $\operatorname{dim} \operatorname{Ker}(A-\lambda I)^{q}+\operatorname{dim} \operatorname{Im}(A-\lambda I)^{q}=n$, we have only to check that $\operatorname{Ker}(A-\lambda I)^{q} \cap \operatorname{Im}(A-\lambda I)^{q}=\{0\}$.
For a contradiction, assume that $x \in \operatorname{Ker}(A-\lambda I)^{q} \cap \operatorname{Im}(A-\lambda I)^{q}, x \neq 0$.
Then $x=(A-\lambda I)^{q} y$, for some y and $(A-\lambda I)^{r} x=0$ and $(A-\lambda I)^{r-1} x \neq 0$ for some integer $r \geq 1$. Thus $(A-\lambda I)^{q+r} y=0$ and $(A-\lambda I)^{q+r-1} y \neq 0$. So Ker
$(A-\lambda I)^{q+r} \neq \operatorname{Ker}(A-\lambda I)^{q+r-1}$. This contradicts to definition of generalized eigenspace.
2.7 Theorem. Let $\lambda_{1}, \ldots, \lambda_{r}$ be all the different eigenvalues of a linear operator $A: C^{n} \rightarrow C^{n}$. Then C^{n} decomposes into the direct sum $C^{n}=R_{\lambda_{1}}(A)+\ldots+R_{\lambda_{r}}(A)$.

Proof. For $n=1$. let λ be an eigenvalue of A, then there exists $v \neq 0$ in C^{n} such that $A v=\lambda v$. Since $\{v\}$ is a basic of C^{n}, for each $x \in C^{n}(A-\lambda I) x$ $=(A-\lambda I) \mu \nu$ for some $\mu \in C$. So we have $(A-\lambda I) x=\mu \lambda \nu-\lambda \mu \nu=0$. Then $x \in R_{\lambda}(A)$. Thus $C^{n}=R_{\lambda}(A)$.

Let $n>1$. Assume that the result holds for dimensions $k=1,2, \ldots, n-1$.
Consider the eigenvalue λ_{1}.
$C^{n}=\operatorname{Ker}\left(A-\lambda_{1} I\right)^{n}+\operatorname{Im}\left(A-\lambda_{1} I\right)^{n}=R_{\lambda_{1}}(A)+U$. We know that $\operatorname{Im}\left(A-\lambda_{1} I\right)^{n}$ $=U$ is A-invariant. Since $R_{\lambda_{1}}(A) \neq 0$, we have $\operatorname{dim} U<n$. By Proposition 2.3, there does not exist generalized eigenvectors of $\left.A\right|_{U}$ corresponding to the eigenvalue λ_{1}. Thus each eigenvalue of $\left.A\right|_{U}$ corresponding to the eigenvalue λ_{1}. Thus each eigenvalue of $\left.A\right|_{U}$ is in $\left\{\lambda_{2}, \ldots, \lambda_{r}\right\}$. By induction hypothesis $U=R_{\lambda_{2}}\left(\left.A\right|_{U}\right)+\cdots+R_{\lambda_{r}}\left(\left.A\right|_{U}\right)$. Thus $C^{n}=R_{\lambda_{1}}(A)+R_{\lambda_{2}}\left(\left.A\right|_{U}\right)+\cdots+R_{\lambda_{r}}\left(\left.A\right|_{U}\right)$. So we show that $R_{\lambda_{k}}(A)=R_{\lambda_{k}}\left(\left.A\right|_{U}\right)$ for $k=2, \ldots, m$. Take a fixed integer $k \in\{2, \ldots, m\}$ and clearly $R_{\lambda_{k}}\left(\left.A\right|_{U}\right) \subseteq R_{\lambda_{k}}(A)$. Assume $R_{\lambda_{k}}\left(\left.A\right|_{U}\right) \neq R_{\lambda_{k}}(A)$. Then there exists $v \in R_{\lambda_{k}}(A)$ but $v \notin R_{\lambda_{k}}\left(\left.A\right|_{U}\right)$. So we get $v \in R_{\lambda_{j}}\left(\left.A\right|_{U}\right)$ for some $j \neq k$ and hence $v \in R_{\lambda_{j}}(A)$. Thus $v \in R_{\lambda_{k}}(A) \cap R_{\lambda_{j}}(A)$. This contradicts to lemma 2.5. So $R_{\lambda_{k}}(A)=R_{\lambda_{k}}\left(\left.A\right|_{U}\right)$. Thus $C^{n}=R_{\lambda_{1}}(A)+\cdots+R_{\lambda_{r}}(A)$.

Figure 1

3. Jordan Subspaces

3.1 Definition. An A-invariant subspace M is called a Jordan subspace corresponding the eigenvalue λ_{0} of A if M is spanned by the vectors of some Jordan chain of A corresponding to λ_{0}.
3.2 Proposition. Let $A: C^{n} \rightarrow C^{n}$ be a linear operator. Let $x_{0}, x_{1}, \ldots, x_{k}$ be a Jordan chain of a linear operator A corresponding to λ_{0}. Then the subspace $M=\operatorname{Span}\left\{x_{0}, \ldots, x_{k}\right\}$ is A-variant.

Proof. We have $A x_{0}=\lambda_{0} x_{0} \in M$ where λ_{0} is the eigenvalue of A and for $i=1$, $\ldots, k, A x_{i}=\lambda_{0} x_{i}+x_{i-1} \in M$. Hence M is A-invariant.
3.3 Theorem. Let $A: C^{n} \rightarrow C^{n}$ be a linear operator. Then there exists a direct sum decomposition

$$
\begin{equation*}
C^{n}=M_{1}+\ldots+M_{p} \tag{1}
\end{equation*}
$$

where M_{i} is a Jordan subspace of A corresponding to an eigenvalue $\lambda_{i}\left(\lambda_{1}, \ldots, \lambda_{p}\right.$ are not necessarily different).

Proof. Assume A has only one eigenvalue λ_{0}, (possibly with there are more one eigenvalue, all equal to λ_{0}).
Let $Y_{j}=\operatorname{Ker}\left(A-\lambda_{0} I\right)^{j}, j=1,2, \ldots, m$, where m is chosen $Y_{m}=R_{\lambda_{0}}(A)$ and $Y_{m-1} \neq R_{\lambda_{0}}(A)$. So $Y_{1} \subset Y_{2} \subset \ldots \subset Y_{m}$. Let $x_{m}^{(1)}, \ldots, x_{m}^{\left(t_{m}\right)}$ is a basis of Y_{m} modulo Y_{m-1}. So $x_{m}^{(1)}, \ldots, x_{m}^{\left(t_{m}\right)}$ are linearly independent in set Y_{m} such that

$$
\begin{equation*}
Y_{m-1}+\operatorname{Span}\left\{x_{m}^{(1)}, \ldots, x_{m}^{\left(t_{m}\right)}\right\}=Y_{m}(\text { the sum is here direct }) \tag{2}
\end{equation*}
$$

Claim that the $m t_{m}$ vectors $\left(A-\lambda_{0} I\right)^{k} x_{m}^{(1)}, \ldots,\left(A-\lambda_{0} I\right)^{k} x_{m}^{\left(t_{m}\right)}, k=0, \ldots, m-1$ are linearly independent. Let

$$
\begin{equation*}
\sum_{k=0}^{m-1} \sum_{i=1}^{t_{m}} \alpha_{i k}\left(A-\lambda_{0} I\right)^{k} x_{m}^{(i)}=0, \quad \alpha_{i k} \in C \tag{3}
\end{equation*}
$$

Apply $\left(A-\lambda_{0} I\right)^{m-1}$ and use the property $\left(A-\lambda_{0} I\right)^{m} x_{m}^{(i)}=0$, for $i=1, \ldots, t_{m}$.
Thus $\left(A-\lambda_{0} I\right)^{m-1}\left\{\sum_{i=1}^{t_{m}} \alpha_{i 0} x_{m}^{(i)}\right\}=0$. So $\sum_{i=1}^{t_{m}} \alpha_{i 0} x_{m}^{(i)} \in Y_{m-1}$.
By 3.3(2), $\sum_{i=1}^{t_{m}} \alpha_{i 0} x_{m}^{(i)} \in Y_{m-1} \cap \operatorname{Span}\left\{x_{m}^{(1)}, \ldots, x_{m}^{t_{m}}\right\}$ and so $\alpha_{10}=\cdots=\alpha_{t_{m} 0}=0$.
Apply $\left(A-\lambda_{0} I\right)^{m-2}$ to $3.3(3)$ we show similarly that $\alpha_{11}=\cdots=\alpha_{t_{m} 1}=0$ and so on.

We put

$$
M_{1}=\quad \operatorname{Span}\left\{\left(A-\lambda_{0} I\right)^{k} x_{m}^{(1)}, k=0, \ldots, m-1\right\}
$$

$$
\begin{gathered}
M_{2}=\quad \operatorname{Span}\left\{\left(A-\lambda_{0} I\right)^{k} x_{m}^{(2)}, k=0, \ldots, m-1\right\} \\
\vdots \\
M_{t_{m}}=\operatorname{Span}\left\{\left(A-\lambda_{0} I\right)^{k} x_{m}^{\left(t_{m}\right)}, k=0, \ldots, m-1\right\}
\end{gathered}
$$

Since $M_{i} \cap M_{j}=\{0\}$ for $i \neq j$, then the sum $M_{1}+M_{2}+\ldots+M_{t_{m}}$ is direct. Now consider the linear independent vectors $x_{m-1}^{(i)}=\left(A-\lambda_{0} I\right) x_{m}^{(i)}, i=1, \ldots, t_{m}$. Claim that

$$
\begin{equation*}
Y_{m-2} \cap \operatorname{Span}\left\{x_{m-1}^{(1)}, x_{m-1}^{(2)}, \ldots, x_{m-1}^{\left(t_{m}\right)}\right\}=\{0\} . \tag{4}
\end{equation*}
$$

Let $\sum_{i=1}^{t_{m}} \alpha_{i} x_{m-1}^{(i)} \in Y_{m-2}, \alpha_{i} \in C$. Apply $\left(A-\lambda_{0} I\right)^{m-2}$ to the left-hand side, we get $\left(A-\lambda_{0} I\right)^{m-2} \sum_{i=1}^{t_{m}} \alpha_{i}\left(A-\lambda_{0} I\right) x_{m}^{(i)}=0, \quad$ So $\quad\left(A-\lambda_{0} I\right)^{m-1} \sum_{i=1}^{t_{m}} \alpha_{i} x_{m}^{(i)}=0, \quad$ which implies $\alpha_{1}=\cdots=\alpha_{t_{m}}=0$. So the equation 3.3(4) follows. Assume that $Y_{m-2}+\operatorname{Span}\left\{x_{m-1}^{(1)}, \ldots, x_{m-1}^{\left(t_{m}\right)}\right\} \neq Y_{m-1}$. Then there exist vectors $x_{m-1}^{\left(t_{m}+1\right)}, \ldots, x_{m-1}^{\left(t_{m}+t_{m-1}\right)} \in Y_{m-1}$ such that $\left\{x_{m-1}^{(i)}\right\}_{i=1}^{t_{m}+t_{m-1}}$ is linearly independent and

$$
\begin{equation*}
Y_{m-2}+\operatorname{Span}\left\{x_{m-1}^{(1)}, \ldots, x_{m-1}^{\left(t_{m}+t_{m-1}\right)}\right\}=Y_{m-1} . \tag{5}
\end{equation*}
$$

Applying previous argument to 3.3(5) as with 3.3(2), we fine that the vectors $\left(A-\lambda_{0} I\right)^{k} x_{m-1}^{(1)}, \ldots,\left(A-\lambda_{0} I\right)^{k} x_{m-1}^{\left(t_{m}+t_{m-1}\right)}, k=0, \ldots, m-2$ are linearly independent.

Now let

$$
\begin{aligned}
M_{t_{m}+1} & =\operatorname{Span}\left\{\left(A-\lambda_{0} I\right)^{k} x_{m-1}^{\left(t_{m}+1\right)}, k=0, \ldots, m-2\right\} \\
& \vdots \\
M_{t_{m}+t_{m-1}} & =\operatorname{Span}\left\{\left(A-\lambda_{0} I\right)^{k} x_{m-1}^{\left(t_{m}+t_{m-1}\right)}, k=0, \ldots, m-2\right\} .
\end{aligned}
$$

If $Y_{m-2}+\operatorname{Span}\left\{x_{m-1}^{(1)}, \ldots, x_{m-1}^{\left(t_{m}\right)}\right\}=Y_{m-1}$, then $t_{m-1}=0$.
At the next step put $x_{m-2}^{(i)}=\left(A-\lambda_{0} I\right) x_{m-1}^{(i)}, i=1, \ldots, t_{m}+t_{m-1}$ and show similarly that $Y_{m-3} \cap \operatorname{Span}\left\{x_{m-2}^{(i)}, i=1, \ldots, t_{m}+t_{m-1}\right\}=\{0\}$.

Assume that that $Y_{m-3} \cap \operatorname{Span}\left\{x_{m-2}^{(i)}, i=1, \ldots, t_{m}+t_{m-1}\right\} \neq Y_{m-2}$, then there exist vectors $x_{m-2}^{(i)} \in Y_{m-2}, i=t_{m}+t_{m-1}+1, \ldots, t_{m}+t_{m-1}+t_{m-2} \quad$ such that $x_{m-2}^{(i)}, i=1, \ldots, t_{m}+t_{m-1}+t_{m-2}$ are linearly independent and $Y_{m-3}+\operatorname{Span}\left\{x_{m-2}^{(i)}, i=1, \ldots, t_{m}+t_{m-1}+t_{m-2}\right\}=Y_{m-2}$.

We continue this process of construction of $M_{i}, i=1, \ldots, p$ where $p=t_{m}+t_{m-1}+\ldots+t_{1}$.

The construction shows that each M_{i} is Jordan subspace of A and $M_{1}+\ldots+$ M_{p} is a direct sum. Also $M_{1}+\ldots+M_{p}=R_{\lambda_{0}}(A)=C^{n}$.

Figure. 2
3.4 Example. Let us consider the matrix

$$
\begin{aligned}
& A=\left[\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right] \\
& |A-\lambda I|=(2-\lambda)^{5} \\
& \lambda=2,2,2,2,2 \text { are eigenvalues of } A .
\end{aligned}
$$

$A-2 I=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right],(A-2 I)^{2}=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right],(A-2 I)^{2}=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$Y_{1}=\operatorname{Ker}(A-2 I)=\left\{\lambda_{1} e_{1}+\lambda_{2} e_{4} \mid \lambda_{1}, \lambda_{2}\right.$ are scalars $\}$
$Y_{2}=\operatorname{Ker}(A-2 I)^{2}=\left\{\mu_{1} e_{1}+\mu_{2} e_{2}+\mu_{3} e_{4}+\mu_{4} e_{5} \mid \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right.$ are scalars $\}$
$Y_{3}=\operatorname{Ker}(A-2 I)^{3}=\left\{\eta_{1} e_{1}+\eta_{2} e_{2}+\eta_{3} e_{3}+\eta_{4} e_{4}+\eta_{5} e_{5} \mid \eta_{1}, \eta_{2}, \eta_{3}+\eta_{4}+\eta_{5}\right.$ are scalars $\}$

$$
Y_{1} \subset Y_{2} \subset Y_{3}=R_{2}(A)=C^{5}
$$

e_{3} is a basis of Y_{3} modulo Y_{2} such that

$$
Y_{2}+\operatorname{span}\left\{e_{3}\right\}=Y_{3}
$$

Jordan subspace $\left.M_{1}=\operatorname{Span}\{A-2 I)^{2} e_{3},(A-2 I) e_{3}, e_{3}\right\}=\operatorname{Span}\left\{e_{1}, e_{2}, e_{3}\right\}$

$$
\begin{aligned}
& (A-2 I) e_{3}=e_{2} \in Y_{2} \\
& Y_{1}+\operatorname{Span}\left\{(A-2 I) e_{3}\right\} \neq Y_{2}
\end{aligned}
$$

$\exists e_{5} \in Y_{2}$ such that $\left\{e_{2}, e_{5}\right\}$ is linearly independent set.
Jordan subspace $M_{2}=\operatorname{Span}\left\{(A-2 I) e_{5}, e_{5}\right\}=\operatorname{Span}\left\{e_{4}, e_{5}\right\}$

$$
M_{1}+M_{2}=R_{2}(A)=C^{5}=Y_{3}
$$

Figure. 3

References

1. S. Axler, Down with Determinants!, American Mathematical Monthly 102(1995) 139-154.
2. S. Axler, Linear Algebra Done Right, Third Edition, Springer International Publishing, 2015.
3. I. Gohberg, P.Lancaster \& L. Rodman, Invariant Subspaces of Matrices with Application, John Wiley \& Sons, New York, 2006.
4. P. R. Halmos, Finite-Dimensional Vector Spaces, Second Edition, Springer-Verlag, New York, 1987.

[^0]: *. Lecturer, Department of Mathematics, Dagon University

